Blog
4   14

Hvordan kædes matematik og etik sammen?

Abonner på nyt om Lisser Rye Ejersbo i dit personlige nyhedsbrev.

OBS: Du er ikke tilmeldt et personligt nyhedsbrev og får derfor ikke en mail med dine valgte emner/blogs. Tilmeld dig her

Etik er et begreb, som jeg møder flere og flere steder. Det skal med overalt, men det gøres på mange forskellige måder. Hvordan det kan finde vej som diskussionsoplæg i matematikundervisningen, være til stede i selve undervisningen eller have et politisk sigte, vil jeg prøve at tage op i denne og flere blogs.

Som specialevejleder har jeg altid skullet sikre mig at de studerende overholdt etiske forskrifter i forhold til indsamling og brug af data. Samtalen om etik foregik altid i den første vejledning. Her for nylig modtog jeg så nogle nye retningslinjer, hvor etikken spiller en noget større rolle og skal med i selve specialet for at overholde reglerne for at skrive et speciale. Etikken er gennem årene kommet til at fylde mere og mere.

Indenfor matematik kan det gøres på forskellige måder. Gennem opgaverne kan det gøres ved at underviseren vælger opgaver, der kan give anledning til diskussioner af etisk karakter. Et eksempel på det er indholdet af denne blog.

Opgave

Følgende opgave har jeg brugt i efteruddannelse af lærere og afprøvet i en 8. klasse. Opgaven drejer sig om følgende dilemma:

Artiklen fortsætter under banneret

Du har fået et job som skal være færdigt indenfor to uger.

Du skal udføre arbejdet hjemme. Jobbet består i at pakke små sæber i æsker. Sæben skal anvendes af forskellige hoteller rundt omkring i verden. Du vil tjene 6.000 kr. på jobbet, men skal selv betale for transporten i forbindelse med at få varerne hjem og tilbage igen.

Du afhenter materialerne mandag den 4. juli. Først tager du bussen til sæbefabrikken. Så tager du en taxa hjem med varerne, sæben og boksene. Busturen koster 20 kr. og taxien koster 180 kr.

Efter en uge kan du se, at du ikke kan overkomme at blive færdig med arbejdet til fredag den 15. juli. Du ringer til Anna og spørger, om hun vil hjælpe dig. Hun kan hjælpe dig tirsdag, onsdag og torsdag – alt i alt ca. 30 timer.

Da I begynder at arbejde sammen, opdager du at Anna arbejder hurtigere end dig selv. Anna pakker med en hastighed af 150 sæber i timen, og du pakker med en hastighed af 100 sæber i timen.

I bliver færdig sent torsdag nat. Du og Anna tager en taxa fredag morgen for at aflevere de færdige sæbebokse.  Taxaturen koster 200 kr. I tager bussen hjem, den koster 20 kr. pr. person.

Efter to uger modtager du 6.000 kr. i betaling for arbejdet. Hvordan vil du dele pengene imellem dig og Anna?                                                                

Opgaven løses i grupper på 3-4 personer. Der skal laves mindst to forskellige forslag til deling af pengene og forslagene skal begrundes.

Besvarelsen skal kunne være på en enkelt side, så vi alle kan følge med, når den bliver fremlagt.

Opgaven er designet med inspiration fra Clarke (1996): Assessment. International Handbook of Mathematics Education

Jeg har valgt at bringe mit design af hele opgaven, som frit kan bruges og ændres, hvis nogen har lyst.

Når jeg har brugt opgaven, har jeg set mange forskellige løsninger. De mest almindelige er forskellige matematiske modeller, hvor man enten fokuserer på antal sæber eller antal timer. Endelig har der været løsninger, hvor man bare delte lige over. Også løsningen, hvor hjælperen bare får en god middag som tak har jeg set – og jeg husker også gruppen, der besluttede at Anna var personens mor – og behøver man overhovedet at give mor noget?

Diskussioner

De løsninger, som eleverne/studerende vælger skal begrundes og ses af alle i en fremlæggelse. Det betyder, at der er mange muligheder for at diskutere, hvilke løsningsmodeller man vælger. Er det matematisk rationalitet eller har vi følelser med, når vi beslutter den slags ting.

Hvis man vil have lidt kristen kulturdimension med ind, kan man vælge at diskutere lignelsen om bonden, der gik ud og fandt daglejere til at arbejde i sin vingård. Han aftale med de første at de kunne tjene en denar for en hel dags arbejde, hvilket arbejdstagerne accepterede. Imidlertid gik bonden ud flere gange i løbet af dagen og hyrede ekstra arbejdere. Det betød at nogle af arbejderne kun havde arbejdet en time ved dagens afslutning, mens andre havde arbejdet mange flere timer. Imidlertid fik alle præcis det samme i løn for dagens arbejde. Det blev de arbejdere, som havde puklet hele dagen, lidt sure over, men de havde jo oprindelig været tilfredse med at tjene blot en denar, så der var ikke noget at komme efter.

Denne lignelse kan også være ganske interessant at diskutere sammen med opgaven. Skal vi dele rationelt matematisk eller findes der andre måder at dele på?


Kommentarer

Man skal være registreret bruger for at skrive kommentarer på folkeskolen.dk. Som registreret bruger får du også mulighed for at tilmelde dig nyhedsbreve m.m.

OPRET PROFIL
{{ comment.author.name }} {{ '(' + comment.author.jobTitle + ')' }}
{{ comment.likeCount }}

{{ comment.title }}

Gem Annuler
Gemmer, vent venligst...
Klag
Kommentaren er slettet

MERE OM EMNET

Når du er logget ind, kan du vælge de emner du ønsker at abonnere på, og få nyt direkte på email. Login

LÆS OGSÅ

Matematiknetværket er for alle, der underviser i eller interesserer sig for faget. I samarbejde med Danmarks Matematiklærerforening.

Læs mere om de faglige netværk
Nu får du et nyhedsbrev (inkl. fagrelevante annoncer) fra netværket. Du kan ændre dine valg af nyhedsbreve på din profilside.
2.015 andre er allerede tilmeldt